Informatique théorique et Applications/Theoretical Informatics and Applications
(vol. 20, n° 2, 1986, p. 183 a 190)

A SIMPLE PROOF OF VALIANT'S LEMMA (*)

by Hermann K.-G. WALTER ()
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Abstract. — Valiant’s algorithm for the recognition problem of contexfree languages uses the
computation of matrix closures. The matrices in consideration are strictly upper triangular. The
crucial point is that multiplication is nonassociative.

The main point is to prove a lemma concerning the computation of the transitive closure by
dividing matrices into submatrices. We give a very simple proof of this lemma.

Résumé. — L’algorithme Valiant pour lanalyse de langages algébriques utilise le calcul de
fermetures de matrices. Les matrices considérées sont nilpotentes. Le fait difficile est que la
multiplication n’est pas associative.

Le point le plus important est la preuve d’'un lemme concernant le calcul de la fermeture transitive
en partitionnant les matrices en sous-matrices. Nous donnons une preuve trés simple de ce lemme.

1. INTRODUCTION

Valiant’s algorithm [2], to solve the wordproblem for contextfree languages
uses a procedure to determine the transitive closure of a strictly upper
triangular matrix. The crucial point of his approach is to design this procedure
even in the case, where the product operation is non-associative. His algorithm
uses several propositions on dividing a matrix into certain submatrices to
obtain the transitive closure by recursiveness. One of these propositions,
which is in fact the essential part of the correctness-proof, seems to be very
hard to prove.

The reader may consult Harrison [1], where an elaborated version is given.
We shall show that a real simple-minded proof can be given.

* Recpived in November 1984, revised in February 1985.
() Institut fiir Theoretische Informatik, FB Informatik, TH Darmstadt, Alexanderstr. 24,
D-6100 Darmstadt, R.F.A..
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2. PRELIMINARIES

We consider an algebraic structure with two operations + and *. With
respect to the addition (R, +) is a semilattice, this means, we assume the
following axiomes:

(A1) (Associativity):
x+y)+z=x+@+2).
(A2) (Commutativity):
x+y=y+x.

(A3) (Idempotence):

X+XxX=X.
(A4) (Neutral element). There exists 0 M with:

x+0=x.

As usual we introduce a partial ordering by:
(AS5) (Absorption):

xSy <« x+y=y.

With respect to the multiplication we assume:
(A6) (Distributivity):

Xk (y+z)=x%*y+x*z
(x+y)*kz=x*kz+yxz

and:
(A7) (Zero-element):

O*%xx=x%0=0.

By our axioms, multiplication and addition are monotonous operations:
(A8):

xSy&usv = x+u=sy+v.
(A9):
XSy&usv = x*kuSy*xo.
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By M, ,(R) we denote the set of (n, n)-matrices A over R.
By transfering the operations +, * in the usual way to matrices, M, ,(R)
again fulfills all our axions. Especially, matrix product is defined by:

(A*B)[i, jl= ), Ali, K1*B[k,j] (=i j<n).
k=1

A matrix Ae M, ,(R) is strictly upper triangular (4€ M, ,(R)) if and only
if:

Ali, =0 if j<i

Especially, the null-matrix 0 containing only O-entries, is a strictly upper
triangular matrix; hence M, ,(R) again fulfills our axioms.

Since associativity is not valid in general, the definition of exponentation
has to be altered. We define inductively for Ae M, ,(R):

Al=A4,

Ai+l= z Ak*Ai—k+1 (l g 2)

k=1

The transitive closure of A is then defined by:

To assert existence, we assume the necessary completeness axiom for R. Since
it is not necessary for M, , (R) we omit the details. We summarize some facts

on exponentiation.

ProrosiTiON 1:

() ASB=>A<B (i=1,2,...);
(i) 4 < B= A* < B¥;

(iii) (4*)*=4*

(iv) A < A%

(v) AeM;,(R)=>A'eM;, (R) (i=1,2,...);
(Vi) Ae M, (R)= A*e M, (R) (i=1,2, ...);
(vii) AMS, (R)=A"i=0 (i=1,2, ...).
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Given a matrix A we are interested in dividing A into submatrices. The most
interesting division is into nine submatrices:

where:

1 2 56
1
)59 and [4 5]x[8 9]

are squarematrices. Special cases are:

— 5 is not present (which implies 2, 4, 6 are not present);

— 9 (or 1) is not present [which implies 3, 6, 7, 8 (or 2, 3, 4, 7)] are not
present.

It is easy to check the following proposition.

/

ProrosiTION2 (Central submatrix lemma): If A€ M,;, (R) and 5*=5 then:

r 2 3%
A*= |4 5 €
7 8 ¢

CoROLLARY 1: If:

1 3
A=[ :IeM,,f,,(R), 1*=1, 9*=9,

709
1 3
A*= .
s ]
COROLLARY 2: If:

1 3 < , 1* 3
A=|:7 9]eM,,',,(R) and A=[7 9*],

then:

then:
A*=(A)*.
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3. VALIANT’S LEMMA

As indicated in the introduction Valiant'’s Lemma is the crucial point of
the algorithm.

Valiant’s Lemma

If:
1 2 3
A= |4 5 6| eM,; ,(R),
7 89
with:
1 27 [1 2 5 67 [5 6
[4 5] =[4 5] and [8 9] _[8 9]’
then:
1 2 3
A*= |4 5 6|,
8
where:

1 3+2*6 [1 3
7 9 L7 9]
Remark: Note, that by the central submatrix lemma the assumption of
Valiant’s lemma immediately yields:

1*=1, 5*=5, 9*=09.

The key to prove Valiant’s lemma is to deal with matrix equations. Consider
first A*. We calculate:

A**A*+A=( Y A")*( Y A’>+A
k=1 =1

=) Y A*xA'+A (Distributivity)
k=1 1=1

© o r-1 ©
Y ¥ AxA+A4=Y Y AxATF+A=) A +A=4",
r=2 l+k=r r=2 k=1 r=2

hence A* is a solution of the matrix equation:

X=Xx*xX+A.
vol. 20, n° 2, 1986
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We claim that A* is the unique minimal solution of this equations. To
show this, we prove that, if X is a solution then

A"<X forall r=1,2, ...
and therefore:
A* £ X (Monotonicity of +).
We proceed by induction. If r=1 we get:
A+ X=A+A+X*x X=A+X*x X=X,

hence 4 < X.

Let r > 1. We assume 4’ £ X for all 1 <i < r. By the monotonicity of *,
we get: '

AxA < X% X
Therefore:
r—1 r—1

A=Y A*A'S Y XxX=X*X<X*X+A=X

i=1 i=1
By this we have proven:

PROPOSITION3: A* is the unique minimal solution of the equation:

X=X*xX+A.

Now, we deal with the following situation. Consider a linear matrix
equation of the form:

X=A4,*X+X*xA,+A,,
where:
AT=A1’ A;=A2’ Al’ AZ

are strictly upper triangular.
To solve this equation we consider the transitive closure of:

A, Ay [A, B
0 A,] |0 4,
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(by the central submatrix-lemma). Applying proposition 3 we get:

[Al B}=|:Al B]*X[Al B]+[A1 A,]

0 4, 0 4, 0 4, 0 4,
_[Ai*A,+4, A, *B+B*A,+A4,
‘[ 0 A, %A, + A, ]

A, A, *B+B%A,+A,

J again by Proposition 3.

Hence B is a solution of the linear matrix equation. Let X be an arbitrary
solution, then we can build;
0 4,

and show by the same calculation:

AIX_AIX*A1X+A1A3
0 A, | |0 4, 0 A4, 0 4, |
A, B _[4 A _[4 X
0 A4, |0 4, |0 4,[

This yields B £ X.

Thus:

ProrosiTION4: If B is determined by:

A, Ay [A, B
0 4, [0 4,/
then B is the unique minimal solution of:
X=A, *X+X*xA,+A,,
provided A, A, are strictly upper triangular and A*=A, and A%=A,.
Now, consider Valiant’s lemma. Let:
1 23

A= |4 and A*=
7

N A=
0 wn N

X
56 6
8 9 9
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Applying Proposition 3 we calculate:

1 2 2%6+3+1%xX+Xx%9
A*= |4 5§ 6
7 8 9

Again we can use Proposition 3 to show that X is the unique minimal
solution of:

I*X+X*x9+2%6+3=X.

Since 1, 9 are strictly upper triangular and 1*=1, 9*=9 we can apply
Proposition 4. By this we get immediately Valiant’s lemma.
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